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Abstract Whistler mode waves are important for precipitating energetic electrons into Earth's upper
atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is
not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of
whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the
plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and
POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves
are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV.
Our new finding provides the first direct evidence of effective pitch angle scattering driven by plume
whistler mode waves and is critical for understanding energetic electron loss process in the inner
magnetosphere. We suggest the effect of plume whistler mode waves be accurately incorporated into future
radiation belt modeling.

Plain Language Summary Electron precipitation into Earth's upper atmosphere is an important
loss mechanism of energetic electrons trapped in the inner magnetosphere. Although whistler mode waves
are known to be effective in producing electron precipitation through pitch angle scattering, the relative
roles of various whistler mode waves that play in electron losses are unclear. In this letter, we quantitatively
analyze conjunction events, where VanAllen Probes observed various whistler mode waves near the equator
and Low‐Earth‐Orbiting satellites detected electron precipitation approximately along the same magnetic
field line but at low altitudes. By combining the satellite data analysis and quasi‐linear theory, we found that
whistler mode waves observed in plumes are very effective in scattering energetic electrons, which are
ultimately lost through interacting with the neutral atmosphere. Our new finding provides the direct
evidence that plume whistler mode waves play an important role in energetic electron precipitation, which
is crucial for understanding energetic electron loss process in the Earth's inner magnetosphere.

1. Introduction

Various types of whistler mode waves are present in the Earth's inner magnetosphere, including hiss
observed inside the plasmasphere (e.g., Thorne et al., 1973), whistler mode waves in plasmaspheric
plumes (called plume whistler mode waves hereafter; Chan & Holzer, 1976; Su et al., 2018; Woodroffe
et al., 2017), chorus waves observed outside the plasmapause (e.g., Burtis & Helliwell, 1969; Koons &
Roeder, 1990), and exohiss observed in the plasmatrough (Thorne et al., 1973; Zhu et al., 2015).
Typical properties and generation mechanisms of plasmaspheric hiss, chorus, and exohiss, as well as
their scattering effects on energetic electrons, have been extensively studied over the past several decades
(e.g., Bortnik, Thorne, Meredith, 2008; Horne et al., 2005; Li, Thorne, et al., 2013; Omura et al., 2008;
Santolík et al., 2003; Thorne et al., 1973, 2013; Zhu et al., 2015), while our understanding of plume
whistler mode waves is rather limited.

Plasmaspheric plumes consist of plasma being drained from the reservoir of plasmaspheric plasma and
extending into the more tenuous outer magnetosphere (Carpenter et al., 1993; Chen & Wolf, 1972; Elphic
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et al., 1996; Goldstein et al., 2004; Grebowsky, 1970; Weiss et al., 1997) and are often associated with large
density fluctuations (Borovsky & Denton, 2008; Goldstein et al., 2004; Moldwin et al., 2004; Spasojević
et al., 2003). Plasma waves in plumes are particularly interesting, because a plume is a unique region where
total plasma density is typically high, but energetic particles (>tens keV) are accessible, thus providing favor-
able conditions for various types of wave generation (Chan & Holzer, 1976; Hayakawa et al., 1986; Ma et al.,
2014; Tsurutani et al., 2015; Usanova et al., 2013; Woodroffe et al., 2017). Recently, plume whistler mode
waves are found to sometimes exhibit discrete rising tones (e.g., Su et al., 2018), which are somewhat similar
to typical chorus waves (Li et al., 2011; Santolík et al., 2003). This discrete feature is different from typical
plasmaspheric hiss that exhibits incoherent broadband emissions (e.g., Bortnik, Thorne, & Meredith,
2008; Santolik et al., 2001; Thorne et al., 1973) and could potentially lead to nonlinear interactions between
waves and electrons (e.g., Albert, 2002; Bortnik, Thorne, Inan, 2008; Tao et al., 2014). Moreover, Su et al.
(2018) reported that plume whistler mode waves could have an unexpectedly large amplitude (~1.5 nT)
and suggested that these waves were locally generated probably through a combination of linear and non-
linear instabilities of hot electrons.

Plasmaspheric plumes are found to be favorable for enhancing pitch angle scattering of radiation belt elec-
trons, thus leading to electron precipitation into the upper atmosphere (Borovsky et al., 2014; Summers
et al., 2008; Zhang et al., 2018). Borovsky and Steinberg (2006) found that relativistic electron dropouts at
geosynchronous orbit often coincided with the presence of plasmaspheric plumes, suggesting the potential
loss of energetic electrons due to interactions with the enhanced plasma waves in plumes. Furthermore,
Summers et al. (2008) evaluated electron precipitation loss due to plume whistler mode waves by analyzing
14 representative plumes and found that pitch angle scattering by plume whistler mode waves can be effi-
cient for inducing precipitation loss of radiation belt electrons with energy from 100 keV to 1 MeV, though
the loss rates are highly dependent on wave power, L shell, and electron energy.

Despite the potential importance of plume whistler mode waves in electron scattering, the direct evidence
showing energetic electron precipitation driven by plume whistler mode waves is still lacking. In this letter,
by analyzing fortuitous conjunction events between near‐equatorial satellites (Van Allen Probes) and Low‐
Earth‐Orbiting satellites (POES/MetOp), we quantitatively evaluate and compare the energetic electron pre-
cipitation driven by three types of whistler mode waves: (1) plume whistler mode waves, (2) plasmaspheric
hiss, and (3) exohiss. Moreover, using quasi‐linear theory we estimate electron precipitations caused by these
three types of whistler mode waves based on the observed wave and plasma properties and compare them
with the POES/MetOp measurements.

2. Overview of Conjunction Events Between VanAllen Probes and POES/MetOp

Figures 1–3 show an overview of conjunction events between the twin Van Allen Probes orbiting near
the equator (Mauk et al., 2013) and POES/MetOp orbiting at a low altitude of ~800 km approximately
along the same magnetic field line (Evans & Greer, 2004). This event occurred during a relatively quiet
period (2 September 2013), when Sym‐H remained above −30 nT over the preceding 2 days, but there
was a modest substorm over 16–20 UT with a minimum AL index of ~ −400 nT (not shown).
Figure 1 shows the total electron density and wave observation from Van Allen Probe A (left) and B (right)
measured by the EMFISIS Waves instrument (Kletzing et al., 2013) onboard Van Allen Probes. Total elec-
tron density (Figures 1a and 1h) was inferred from the upper hybrid resonance line (Kurth et al., 2015)
and was used to identify various regions: (1) plume (magenta), (2) plasmasphere (blue), and (3) plasma-
trough (green). A plasmapause location (indicated by the vertical black line in Figure 1) is defined as the
innermost steep density gradient; more specifically, a factor of ~5 drop within 0.5 L (Moldwin et al.,
2002). After a plasmapause is identified, a plume is defined in a region outside the plasmapause, where
plasma density is considerably larger than the plasmatrough density at lower L shells. Based on the plasma
density and wave polarization properties (Figures 1d, 1e, 1k, and 1l), five different types of plasma waves
were identified (see the detailed criteria in Table S1 in the supporting information) with the wave flag shown
in Figures 1f and 1m, namely, plasmaspheric hiss (yellow), exohiss (green), plume whistler mode wave
(orange), chorus (cyan), and magnetosonic waves (red). Over 15:30–20:30 UT, Van Allen Probe A
(Figures 1b–1f) first observed magnetosonic waves and weak exohiss in the plasmatrough (15:30–16:00
UT), strong whistler mode waves in plasmaspheric plumes (16:00–18:30 UT), magnetosonic waves in the
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plasmatrough again (18:30–19:00 UT), and hiss inside the plasmasphere (after ~19 UT). Simultaneously, Van
Allen Probe B (Figures 1i–1m) detected hiss inside the plasmasphere (before ~16:30 UT), as well as weak
exohiss below 1 kHz and very weak chorus waves with frequencies near 0.5 fce in the plasmatrough
region (~16:30–19:00 UT), without detecting any plumes. Since exohiss is suggested to be formed due to
the leakage of plasmaspheric hiss (Thorne et al., 1973; Zhu et al., 2015), its amplitude is typically weaker
than that of plasmaspheric hiss. After ~19 UT quasi‐parallel chorus waves with modest wave amplitudes
(from ~16 to ~42 pT) were detected at L shells above ~6.2. It is worthwhile to note that we adopted the L
shell based on the T01 magnetic field model (Tsyganenko, 2002), since the in situ magnetic field
measurements from Van Allen Probes were closest to the magnetic field values from the T01 magnetic
field model among all available Tsyganenko magnetic field models. Figure 2 illustrates the trajectories of
Van Allen Probe A and B over 15:30–20:30 UT on 2 September 2013 color coded for the different regions.
The structure of the plasmasphere and plume regions is depicted based on the plasma density observation
from Van Allen Probes. It is important to note that Van Allen Probe B, which did not detect any plume
features, was traveling in an earlier magnetic local time (over 13–18 MLT) than Van Allen Probe A (over
~18–22 MLT), which clearly detected a plume. Interestingly, the observed plume whistler mode waves
(Figures 1b and 1c) were intense (~120 pT) and exhibited strong modulation, probably due to the
modulating plasma density (e.g., Chen et al., 2012). High‐resolution waveform data were available for the
observed plume whistler mode waves during several short intervals (6 s) over the period of 16:00–18:30

Figure 1. Overview of the observation fromVan Allen Probe A and B on 2 September 2013. (a) Total electron density inferred from the upper hybrid resonance line,
where the magenta, blue, and green lines represent the regions of plume, plasmasphere, and plasmatrough respectively. (b) Frequency‐time spectrogram of electric
spectral density, (c) magnetic spectral density, (d) ellipticity, (e) wave normal angle (WNA), and (f) wave flag color‐coded for different types of magnetospheric
waves. In panels (b)–(f), the magenta (white) dashed line represents 0.5 fce (fLHR), where fce (fLHR) is electron cyclotron frequency (lower hybrid resonance fre-
quency). (g) Frequency‐time spectrogram of magnetic spectral density from the magnetometer data, where the solid, dashed, and dotted lines indicate proton,
helium, and oxygen cyclotron frequency. (h–n) Similar to panels (a)–(g) but observed by Van Allen Probe B over the same time period. The black dotted vertical
lines at ~19 UT on the left panels and ~16:30 UT on the right panels represent the plasmapause crossing. The magenta (Time 1), blue (Time 2), and green vertical
lines (Time 3) indicate the conjunction time with POES/MetOp.
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UT, and they all exhibited broadband hiss‐like emissions rather than dis-
crete rising or falling tone elements (not shown). It is also worth noting
that electromagnetic ion cyclotron (EMIC) waves, which are sometimes
observed in plumes (e.g., Usanova et al., 2013), were not detected by
Van Allen Probe A or B over the entire time period of 15:30–20:30 UT
(Figures 1g and 1n).

Around Times 1, 2, and 3, as marked by the vertical lines in Figure 1,
POES/MetOp satellites passed through the magnetically conjugate region
at a low altitude (~800 km). Figure 3 shows the electron flux observation
from POES/MetOp around the conjunction Times 1, 2, and 3. The particle
detector onboard POES/MetOp has two telescopes with the 0° (90°) tele-
scope measuring precipitating (trapped or quasi‐trapped) electrons at
various energies of ≳30, ≳100, and ≳300 keV (Evans & Greer, 2004;
Green, 2013). A proton channel (≳6.9 MeV) mainly detects electrons
above ≳700 keV and thus can be used to monitor highly relativistic elec-
trons (Green, 2013; Rodger et al., 2010; Yando et al., 2011). Proton con-
tamination at ≳30 , ≳100, and ≳300 keV channels was removed using
the method described in Peck et al. (2015). During Time 1 (~18:07 UT;
Figures 3a and 3b), MetOp‐01 traversed through ~20.8 MLT and detected
strong electron precipitation in energy channels of ≳30, ≳100, and
approximately ≳300 keV over L shells of 6.8–7.5 (6.1–6.6) based on the
T01 (International Geomagnetic Reference Field) magnetic field model,
where the precipitating electron flux was close to the trapped value. The
gray‐shaded region in Figure 3b, also marked with the gray star symbol in
Figure 2, is roughly in the conjugate location with the region where plume
whistler mode waves were detected by Van Allen Probe A (marked with
the black star symbol in Figure 2). During Time 2 (~19:47 UT;
Figures 3c and 3d), ~100 min after Time 1, MetOp‐01 passed through
the same L shell range at ~20.8 MLT again. In particular, near the

Figure 2. A cartoon illustrating the trajectories of Van Allen Probes and
POES/MetOp satellites over 15:30–20:30 UT on 2 September 2013. The
gray‐shaded region represents the plasmasphere and plume with the black
solid line indicating the boundary. The color‐coded curves along the Van
Allen Probes trajectory indicate plasmasphere (blue), plasmatrough (green),
and plume (magenta). The light red lines represent the trajectories of
NOAA‐15 andMetOp‐01. The gray (black) star symbol indicates the location
of POES/MetOp (Van Allen Probes) when the conjunction occurred at
Times 1, 2, and 3.

Figure 3. POES/MetOp observation of energetic electron precipitation during the three conjunction intervals (Time 1: plumewhistlermode waves; Time 2: plasma-
spheric hiss; Time 3: exohiss). (a) L shells of MetOp‐01 based on the T01 (black) and IGRF (blue) magnetic field model during Time 1. (b) Precipitating (solid lines)
and trapped or quasi‐trapped (dotted lines) electron fluxes at ≳30 (black), ≳100 (blue), ≳300 (green), and ≳700 keV (red). In panel (b), the gray‐shaded region
represents the L shell range of the rough conjunction with Van Allen Probe A, and themagenta dotted vertical lines indicate the precipitation boundaries, where the
corresponding L shell from the T01 (IGRF) magnetic field model is indicated with the black (blue) text. (c and d) Similar to (a) and (b) but at ~19:47 UT (~100 min
later) observed by MetOp‐01. (e and f) Similar to (a) and (b) but at ~18:23 UT observed by NOAA‐15.
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conjunction region (gray‐shaded region in Figure 3d) with Van Allen Probe A, MetOp‐01 detected modest
electron precipitation at ≳30 and ≳100 keV. The strong electron precipitation at ≳30 and ≳100 keV at
L(T01) > 7.9 and L (IGRF) > 6.9 in Figure 3d at ~19:46 UT might still be caused by the plume whistler mode
waves, which may have lasted for at least a few hours, although the conjugate wave measurements near the
equator were not available to verify it. This feature of long‐lasting plume whistler mode waves is also sup-
ported by the fact that NOAA‐16 also observed very similar electron precipitation (not shown) to that by
MetOp‐01 (Figure 3b) but at ~18:52 UT, which occurred between Times 1 and 2 at a slightly earlier MLT
(~20.4). During Time 3 (~18:23 UT; Figures 3e and 3f), NOAA‐15 passed through the L shell from 9 to 4
at ~17 MLT. Near the conjugate region (gray shaded region in Figure 3f) with Van Allen Probe B, which
observed very weak exohiss, NOAA‐15 detected little electron precipitation at all energy channels (≳30,
≳100, ≳300, and ≳700 keV). The relatively strong electron precipitation near L(T01) ~ 6.6 and
L(T01) ~ 7.2 (magenta dotted vertical lines) might be caused by chorus waves, since modest chorus waves
were present at L(T01) > 6, as observed by Van Allen Probe B, but after ~19:30 UT (~1 h later). It is worth
noting that there was no clear correlation between the observed electron and proton precipitation at
Times 1, 2, and 3 (not shown), supporting that the observed electron precipitations near conjunction were
not caused by EMIC waves. The electron observations at Times 1, 2, and 3 indicate that the relatively strong
plume whistler mode waves led to the observed strong electron precipitation at Time 1, the modest plasma-
spheric hiss drove the modest electron precipitation at Time 2, and the weak exohiss caused little electron
precipitation at Time 3. The quantitative calculation of electron precipitation driven by the above three types
of whistler mode waves is discussed in section 3.

3. Calculation of Electron Precipitation Based on Quasi‐linear Theory

We used quasi‐linear theory to calculate the electron precipitation driven by plume whistler mode waves,
plasmaspheric hiss, and exohiss. The Full Diffusion Code (Ni et al., 2008) is used to calculate bounce‐
averaged pitch angle diffusion coefficients of three types of whistler mode waves based on the observed wave
and plasma properties, as listed in Table S2. We adopted the observed wave frequency spectra for each type
of whistler mode waves to calculate diffusion coefficients by including Landau resonance and cyclotron reso-
nances with resonance harmonics from −10 to +10. Wave normal angles of plume whistler mode waves,
plasmaspheric hiss, and exohiss are assumed to be quasi‐parallel near the equator, which is consistent with
the in situ Van Allen Probes observation (Figures 1e and 1l), and becomemore oblique with increasing mag-
netic latitudes (Ni et al., 2013).

Figures 4a–4c show the bounce‐averaged pitch angle diffusion coefficients for the plume whistler mode
waves observed at Time 1, plasmaspheric hiss detected at Time 2, and exohiss measured at Time 3. The
amplitude of the plume whistler mode wave is the strongest (120 pT), plasmaspheric hiss is modestly strong
(74 pT), but exohiss is very weak (9 pT). As a consequence, pitch angle diffusion coefficients of plume
whistler mode waves are largest on a timescale down to ~10 min at ~10 keV, whereas pitch angle diffusion
coefficients of exohiss are extremely small on a timescale of tens of hours at ~10 keV. The ratio between the
plasma frequency and electron cyclotron frequency (fpe/fce) is largest for plume whistler mode waves (28.1),
modest for plasmaspheric hiss (~19.7), and smallest for exohiss (~8.8). As a consequence, the energy of
electrons (Figures 4a–4c), which are subject to strongest pitch angle scattering near the loss cone, tends to
increase with decreasing fpe/fce (<10 keV for plume whistler mode waves, ~25 keV for plasmaspheirc hiss,
and ~100 keV for exohiss). Figures 4d–4f show the direct comparison between pitch angle diffusion coeffi-
cients near the loss cone (Dαα|LC) and strong diffusion limit (DSD; Summers & Thorne, 2003) for three types
of whistler mode waves, respectively.Dαα|LC is closest to DSD for plume whistler mode waves (particularly at
a few tens of keV), while Dαα|LC is more than an (2) order(s) of magnitude smaller than DSD for plasma-
spheric hiss (exohiss). Moreover, we use the pitch angle diffusion coefficients to infer the electron pitch angle
distributions in a quasi‐equilibrium state (Kennel & Petschek, 1966; Li, Ni, et al., 2013; Ni et al., 2014;
Theodoridis & Paolini, 1967). This approach is reasonable to estimate wave‐driven electron precipitations,
since these whistler mode waves typically last longer than several minutes (as an example shown in
Figure 1) and the 1‐D Fokker‐Planck simulation result (not shown) indicates that electron pitch angle dis-
tribution near the loss cone (equatorial pitch angles over 0–10°) reaches a quasi‐steady state within a few
minutes after interacting with these whistler mode waves. The bottom panels in Figure 4 show the normal-
ized electron flux (to the flux value at 90° pitch angle) as a function of equatorial pitch angle color coded for
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Figure 4. Calculated electron precipitation based on quasi‐linear theory driven by (left) plume whistler mode waves, (middle) plasmaspheric hiss, and (right) exo-
hiss. Bounce‐averaged pitch angle diffusion coefficients as a function of equatorial pitch angle and energy due to plume whistler mode waves (Figure 4a), plas-
maspheric hiss (Figure 4b), and exohiss (Figure 4c). The comparison between pitch angle diffusion coefficients near the loss cone (red lines) and strong diffusion
limit (blue lines) at the location where plume whistler mode waves (Figure 4d), plasmaspheric hiss (Figure 4e), and exohiss (Figure 4f) were observed.
Normalized electron flux to the 90° value as a function of equatorial pitch angle color‐coded for various energies from ~30 keV to 5.2 MeV driven by plume whistler
mode waves (Figure 4g), plasmaspheric hiss (Figure 4h), and exohiss (Figure 4i). The black vertical dashed lines on the bottom panels represent the corresponding
equatorial bounce loss cone.
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various energies. Among three types of whistler mode waves, the loss cone is most filled for the plume whis-
tler mode waves, modestly filled for the plasmaspheric hiss, but mostly empty for the exohiss. The
trend shown in Figures 4d–4i is consistent with the POES/MetOp observation, where the ratio of
precipitating‐to‐trapped electrons is highest for plume whistler mode waves, modest for plasmaspheric hiss,
and lowest for exohiss.

4. Summary and Discussion

In this letter, we report fortuitous conjunction events between Van Allen Probes and POES/MetOp satellites
and quantitatively evaluate and directly compare energetic electron precipitation driven by plume whistler
mode waves, plasmaspheric hiss, and exohiss. Most importantly, we provide the first direct evidence of
efficient electron precipitation from tens to hundreds of keV driven by plume whistler mode waves. The
principal findings of this study are summarized below.

1. During a modest substorm activity, a plasmaspheric plume was present over the dusk‐to‐premidnight
sector. Van Allen Probe A, which traversed the postdusk sector, observed whistler mode waves in plumes
and hiss inside the plasmasphere, whereas Van Allen Probe B, which traveled through the predusk sec-
tor, observed exohiss outside the plasmapause and chorus at high L shells (>6.2) without detecting any
plume features.

2. In these conjunction events, plume whistler mode waves were strongest (~120 pT), plasmaspheric hiss
was modestly strong (~74 pT), and exohiss was very weak (~9 pT). The wave normal angles of all three
types of whistler mode waves were quasi‐parallel near the equator. Moreover, during the entire conjunc-
tion interval EMIC waves were not detected by Van Allen Probes.

3. In the conjugate location at low altitudes, POES/MetOp detected strongest electron precipitation at ≳30,
≳100, and≳300 keV in association with the plume whistler mode waves, modest electron precipitation at
≳30 and ≳100 keV in association with the plasmaspheric hiss, but little electron precipitation corre-
sponding to the exohiss.

4. The trend of the estimated electron precipitation using quasi‐linear theory based on the observed wave
and plasma parameters is consistent with the POES/MetOp observation, clearly indicating that plume
whistler mode waves are most effective in producing energetic electron precipitation from tens to hun-
dreds of keV compared to the plasmaspheric hiss and the exohiss in this event.

This letter presents a pilot study showing the direct evidence of efficient pitch angle scattering driven by
plume whistler mode waves through analyzing fortuitous conjunction events, where plume whistler mode
waves were observed to be strong (~120 pT) in association with a modest substorm activity and exhibit
hiss‐like emissions. A recent study by Shi et al. (2019) analyzed several years of Van Allen Probes wave data
and found that plume whistler mode waves are typically stronger (up to a few hundred pT) than plasma-
spheric hiss, and their occurrence rate could be up to a few tens of %, particularly during geomagnetically
active periods. However, the detailed emission structures were not analyzed systematically in Shi et al.
(2019), since they used the survey‐mode wave data. Moreover, Su et al. (2018) reported plume whistler mode
waves with very large amplitudes (~1.5 nT) and rising tone elements embedded on top of hiss‐like emissions.
It would be very interesting to understand how the detailed emission structures of plume whistler mode
waves (rising/falling tones or hiss‐like emissions) vary under various geomagnetic activities. A more sys-
tematic study through analyzing a sufficient number of high‐resolution waveform data for plume whistler
mode waves, although beyond the scope of the present pilot study, is needed to address this interesting ques-
tion and is left for future investigations.

Our new findings on the efficient pitch angle scattering caused by plume whistler mode waves, together with
their relatively strong wave amplitudes compared to plasmaspheric hiss from the statistical results by Shi
et al. (2019), indicate their potential importance in the loss process of energetic electrons in the Earth's inner
magnetosphere. It is worthwhile to note that plume whistler mode waves are typically observed in the region
with relatively high values of fpe/fce, thus are particularly effective in driving pitch angle scattering loss of
electrons with lower energy compared to plasmaspheric hiss and exohiss. Summers et al. (2008) found that
hundreds of keV seed electron population, which can be further accelerated to MeV electrons (Horne et al.,
2005; Thorne et al., 2013), is subject to rapid precipitation loss due to scattering by plume whistler mode
waves, thus reducing the effect of MeV electron acceleration. In addition, plume whistler mode waves are
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found to be capable of causing losses of energetic electrons with pitch angles closer to 90° (e.g., Li et al.,
2007), which is a core population of energetic electrons in the radiation belts but is difficult to be scattered
toward the loss cone by EMIC waves alone (Kersten et al., 2014; Usanova et al., 2014). In spite of the impor-
tance of plume whistler mode waves, it is crucial to note that the effects of plume whistler mode waves have
not been accurately incorporated into most global radiation belt modeling yet (e.g., Albert et al., 2009;
Glauert et al., 2014; Li et al., 2016; Ma et al., 2018; Tu et al., 2014). Therefore, we suggest that future radiation
belt modeling efforts address the quantitative effects of plume whistler mode waves, as well as their com-
bined scattering effects due to coexisting other types of magnetospheric waves, on the global evolution of
energetic electron dynamics in the Earth's outer radiation belt.
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